Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5850, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462651

RESUMO

Biowaste-derived carbon materials are a sustainable, environmentally friendly, and cost-effective way to create valuable materials. Activated carbon can be a supporting material for electrocatalysts because of its large specific surface area and porosity. However, activated carbon has low catalytic activity and needs to be functionalized with heteroatoms, metals, and combinations to improve conductivity and catalytic activity. Ruthenium (Ru) catalysts have great potential to replace bench market catalysts in hydrogen evolution reaction (HER) applications due to their similar hydrogen bond strength and relatively lower price. This study reports on the synthesis and characterizations of carbon-supported Ru catalysts with large surface areas (~ 1171 m2 g-1) derived from coffee waste. The uniformly dispersed Ru nanoparticles on the porous carbon has excellent electrocatalytic activity and outperformed the commercial catalyst platinum on carbon (Pt/C) toward the HER. As-synthesized catalyst needed only 27 mV to reach a current density of 10 mA cm-2, 58.4 mV dec-1 Tafel slope, and excellent long-term stability. Considering these results, the Ru nanoparticles on coffee waste-derived porous carbon can be utilized as excellent material that can replace platinum-based catalysts for the HER and contribute to the development of eco-friendly and low-cost electrocatalyst materials.

2.
BMC Genomics ; 24(1): 475, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608245

RESUMO

The genus Sophora (Fabaceae) includes medicinal plants that have been used in East Asian countries since antiquity. Sophora flavescens is a perennial herb indigenous to China, India, Japan, Korea, and Russia. Its dried roots have antioxidant, anti-inflammatory, antibacterial, apoptosis-modulating, and antitumor efficacy. The congeneric S. koreensis is endemic to Korea and its genome is less than half the size of that of S. flavescens. Nevertheless, this discrepancy can be used to assemble and validate the S. flavescens genome. A comparative genomic study of the two genomes can disclose the recent evolutionary divergence of the polymorphic phenotypic profiles of these species. Here, we used the PacBio sequencing platform to sequence and assemble the S. koreensis and S. flavescens genomes. We inferred that it was mainly small-scale duplication that occurred in S. flavescens. A KEGG analysis revealed pathways that might regulate the pharmacologically important secondary metabolites in S. flavescens and S. koreensis. The genome assemblies of Sophora spp. could be used in comparative genomics and data mining for various plant natural products.


Assuntos
Alcaloides , Antineoplásicos , Sophora , Sophora/genética , Duplicação Gênica , Genômica , Sophora flavescens
3.
Front Chem ; 10: 1056596, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505750

RESUMO

Electroplated copper was prepared under typical conditions and a high defect density to study the effect of the defects on its self-annealing phenomenon. Two conditions, grain growth and stress relaxation during self-annealing, were analyzed with electron backscattered diffraction and a high-resolution X-ray diffractometer. Abnormal grain growth was observed in both conditions; however, the grown crystal orientation differed. The direction and relative rate at which abnormal grain growth proceeds were specified through textured orientation, and the self-annealing mechanism was studied by observing the residual stress changes over time in the films using the sin2Ψ method.

4.
Bioorg Chem ; 127: 105978, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35752099

RESUMO

Artocarpus elasticus is a popular fruit tree in the tropical regions. Primary screenings of methanol extracts of the root bark confirmed its potent inhibition of bacterial neuraminidase (BNA), which plays an essential role in the pathogenesis of many microbial diseases. Assessments of the responsible phytochemicals were conducted by isolating eight compounds (1-8) and two of them (6 and 8) were identified as new compounds. Among the isolates, the dihydrobenzoxanthones attained the highest BNA inhibition with IC50 values of 0.5 âˆ¼ 3.9 µM. Further investigation of the inhibitory mechanism by Lineweaver-Burk plots revealed the phytochemicals to function as reversible noncompetitive inhibitors. Fluorescence quenching showed their binding affinities were highly correlated with their inhibitory potential dose-dependently. Molecular docking experiments suggested the dihydrobenzoxanthones (4 and 6) as noncompetitive inhibitors of BNA with unique interaction with Tyr435 of BNA in comparison with the mother flavonoid (7).


Assuntos
Artocarpus , Artocarpus/química , Bactérias , Flavonoides/química , Simulação de Acoplamento Molecular , Neuraminidase , Compostos Fitoquímicos , Extratos Vegetais/química
5.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163234

RESUMO

Owing to several mutations, the oncogene Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) is activated in the majority of cancers, and targeting it has been pharmacologically challenging. In this study, using an in silico approach comprised of pharmacophore modeling, molecular docking, and molecular dynamics simulations, potential KRAS G12D inhibitors were investigated. A ligand-based common feature pharmacophore model was generated to identify the framework necessary for effective KRAS inhibition. The chemical features in the selected pharmacophore model comprised two hydrogen bond donors, one hydrogen bond acceptor, two aromatic rings and one hydrophobic feature. This model was used for screening in excess of 214,000 compounds from InterBioScreen (IBS) and ZINC databases. Eighteen compounds from the IBS and ten from the ZINC database mapped onto the pharmacophore model and were subjected to molecular docking. Molecular docking results highlighted a higher affinity of four hit compounds towards KRAS G12D in comparison to the reference inhibitor, BI-2852. Sequential molecular dynamics (MD) simulation studies revealed all four hit compounds them possess higher KRAS G12D binding free energy and demonstrate stable polar interaction with key residues. Further, Principal Component Analysis (PCA) analysis of the hit compounds in complex with KRAS G12D also indicated stability. Overall, the research undertaken provides strong support for further in vitro testing of these newly identified KRAS G12D inhibitors, particularly Hit1 and Hit2.


Assuntos
Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Simulação por Computador , Desenho de Fármacos , Descoberta de Drogas/métodos , Humanos , Ligação de Hidrogênio , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Bibliotecas de Moléculas Pequenas
6.
ChemistryOpen ; 10(5): 593-599, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34010501

RESUMO

Scientists all over the world are facing a challenging task of finding effective therapeutics for the coronavirus disease (COVID-19). One of the fastest ways of finding putative drug candidates is the use of computational drug discovery approaches. The purpose of the current study is to retrieve natural compounds that have obeyed to drug-like properties as potential inhibitors. Computational molecular modelling techniques were employed to discover compounds with potential SARS-CoV-2 inhibition properties. Accordingly, the InterBioScreen (IBS) database was obtained and was prepared by minimizing the compounds. To the resultant compounds, the absorption, distribution, metabolism, excretion and toxicity (ADMET) and Lipinski's Rule of Five was applied to yield drug-like compounds. The obtained compounds were subjected to molecular dynamics simulation studies to evaluate their stabilities. In the current article, we have employed the docking based virtual screening method using InterBioScreen (IBS) natural compound database yielding two compounds has potential hits. These compounds have demonstrated higher binding affinity scores than the reference compound together with good pharmacokinetic properties. Additionally, the identified hits have displayed stable interaction results inferred by molecular dynamics simulation results. Taken together, we advocate the use of two natural compounds, STOCK1N-71493 and STOCK1N-45683 as SARS-CoV-2 treatment regime.


Assuntos
Antivirais/metabolismo , Produtos Biológicos/metabolismo , Inibidores Enzimáticos/metabolismo , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/metabolismo , Antivirais/farmacocinética , Produtos Biológicos/farmacocinética , Descoberta de Drogas , Inibidores Enzimáticos/farmacocinética , Metiltransferases , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Software , Proteínas não Estruturais Virais/farmacocinética
7.
Front Microbiol ; 12: 647295, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967984

RESUMO

The rapid spread of COVID-19, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a worldwide health emergency. Unfortunately, to date, a very small number of remedies have been to be found effective against SARS-CoV-2 infection. Therefore, further research is required to achieve a lasting solution against this deadly disease. Repurposing available drugs and evaluating natural product inhibitors against target proteins of SARS-CoV-2 could be an effective approach to accelerate drug discovery and development. With this strategy in mind, we derived Marine Natural Products (MNP)-based drug-like small molecules and evaluated them against three major target proteins of the SARS-CoV-2 virus replication cycle. A drug-like database from MNP library was generated using Lipinski's rule of five and ADMET descriptors. A total of 2,033 compounds were obtained and were subsequently subjected to molecular docking with 3CLpro, PLpro, and RdRp. The docking analyses revealed that a total of 14 compounds displayed better docking scores than the reference compounds and have significant molecular interactions with the active site residues of SARS-CoV-2 virus targeted proteins. Furthermore, the stability of docking-derived complexes was analyzed using molecular dynamics simulations and binding free energy calculations. The analyses revealed two hit compounds against each targeted protein displaying stable behavior, binding affinity, and molecular interactions. Our investigation identified two hit compounds against each targeted proteins displaying stable behavior, higher binding affinity and key residual molecular interactions, with good in silico pharmacokinetic properties, therefore can be considered for further in vitro studies.

8.
Biomed Pharmacother ; 137: 111356, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33561649

RESUMO

All the plants and their secondary metabolites used in the present study were obtained from Ayurveda, with historical roots in the Indian subcontinent. The selected secondary metabolites have been experimentally validated and reported as potent antiviral agents against genetically-close human viruses. The plants have also been used as a folk medicine to treat cold, cough, asthma, bronchitis, and severe acute respiratory syndrome in India and across the globe since time immemorial. The present study aimed to assess the repurposing possibility of potent antiviral compounds with SARS-CoV-2 target proteins and also with host-specific receptor and activator protease that facilitates the viral entry into the host body. Molecular docking (MDc) was performed to study molecular affinities of antiviral compounds with aforesaid target proteins. The top-scoring conformations identified through docking analysis were further validated by 100 ns molecular dynamic (MD) simulation run. The stability of the conformation was studied in detail by investigating the binding free energy using MM-PBSA method. Finally, the binding affinities of all the compounds were also compared with a reference ligand, remdesivir, against the target protein RdRp. Additionally, pharmacophore features, 3D structure alignment of potent compounds and Bayesian machine learning model were also used to support the MDc and MD simulation. Overall, the study emphasized that curcumin possesses a strong binding ability with host-specific receptors, furin and ACE2. In contrast, gingerol has shown strong interactions with spike protein, and RdRp and quercetin with main protease (Mpro) of SARS-CoV-2. In fact, all these target proteins play an essential role in mediating viral replication, and therefore, compounds targeting aforesaid target proteins are expected to block the viral replication and transcription. Overall, gingerol, curcumin and quercetin own multitarget binding ability that can be used alone or in combination to enhance therapeutic efficacy against COVID-19. The obtained results encourage further in vitro and in vivo investigations and also support the traditional use of antiviral plants preventively.


Assuntos
Tratamento Farmacológico da COVID-19 , Catecóis/farmacologia , Curcumina/farmacologia , Álcoois Graxos/farmacologia , Ayurveda/métodos , Quercetina/farmacologia , SARS-CoV-2 , Antivirais/farmacologia , Reposicionamento de Medicamentos/métodos , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Proteínas Virais/antagonistas & inibidores
9.
Int J Biol Macromol ; 165(Pt B): 1822-1831, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33075336

RESUMO

Ugonins are unique flavonoids with cyclohexyl motif from Helminthostachys zeylanica. Ugonins (1-6) from the target plant displayed significant inhibitions against both PTP1B (IC50s = 0.6-7.3 µM) and α-glucosidase (IC50s = 3.9-32.9 µM), which are crucial enzymes associated with diabetes. A cyclohexyl motif was proved to be the key functionality for PTP1B and α-glucosidase. For example, 1 was 26-fold effective to PTP1B and 15-fold to α-glucosidase than its mother compound, luteolin. This tendency was well elucidated with distinctive differences of binding affinities (KSV) between ugonins and mother compounds to PTP1B enzyme. Inhibitory mechanisms to PTP1B and α-glucosidase were fully characterized to be competitive, non-competitive and mixed type I according to the position of cyclohexyl functionality. In particular, the ugonin J (1) has a cyclohexyl on the B ring was estimated as a reversible, competitive and a slow binding inhibitor with parameters: Kiapp = 0.1234 µM, k3 = 0.5713 µM-1 min-1, and k4 = 0.0705 min-1. In-depth molecular docking experiments disclosed the specific binding sites and residues of competitive inhibitor (1) and non-competitive inhibitor (4) to PTP1B enzymes. As well, all six ugonins (1-6) also inhibited α-glucosidase effectively, in which cyclohexyl motif was also the key functionality of inhibitions.


Assuntos
Cicloexanos/química , Flavonoides/química , Flavonoides/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Traqueófitas/química , alfa-Glucosidases/metabolismo , Flavonoides/farmacologia , Humanos , Cinética , Simulação de Acoplamento Molecular , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Espectrometria de Fluorescência
10.
Molecules ; 25(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752079

RESUMO

Drug resistance is a core issue in cancer chemotherapy. A known folate antagonist, methotrexate (MTX) inhibits human dihydrofolate reductase (hDHFR), the enzyme responsible for the catalysis of 7,8-dihydrofolate reduction to 5,6,7,8-tetrahydrofolate, in biosynthesis and cell proliferation. Structural change in the DHFR enzyme is a significant cause of resistance and the subsequent loss of MTX. In the current study, wild type hDHFR and double mutant (engineered variant) F31R/Q35E (PDB ID: 3EIG) were subject to computational study. Structure-based pharmacophore modeling was carried out for wild type (WT) and mutant (MT) (variant F31R/Q35E) hDHFR structures by generating ten models for each. Two pharmacophore models, WT-pharma and MT-pharma, were selected for further computations, and showed excellent ROC curve quality. Additionally, the selected pharmacophore models were validated by the Guner-Henry decoy test method, which yielded high goodness of fit for WT-hDHFR and MT-hDHFR. Using a SMILES string of MTX in ZINC15 with the selections of 'clean', in vitro and in vivo options, 32 MTX-analogs were obtained. Eight analogs were filtered out due to their drug-like properties by applying absorption, distribution, metabolism, excretion, and toxicity (ADMET) assessment tests and Lipinski's Rule of five. WT-pharma and MT-pharma were further employed as a 3D query in virtual screening with drug-like MTX analogs. Subsequently, seven screening hits along with a reference compound (MTX) were subjected to molecular docking in the active site of WT- and MT-hDHFR. Through a clustering analysis and examination of protein-ligand interactions, one compound was found with a ChemPLP fitness score greater than that of MTX (reference compound). Finally, a simulation of molecular dynamics (MD) identified an MTX analog which exhibited strong affinity for WT- and MT-hDHFR, with stable RMSD, hydrogen bonds (H-bonds) in the binding site and the lowest MM/PBSA binding free energy. In conclusion, we report on an MTX analog which is capable of inhibiting hDHFR in wild type form, as well as in cases where the enzyme acquires resistance to drugs during chemotherapy treatment.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Metotrexato/farmacologia , Tetra-Hidrofolato Desidrogenase/metabolismo , Área Sob a Curva , Sítios de Ligação , Domínio Catalítico , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/uso terapêutico , Humanos , Ligação de Hidrogênio , Ligantes , Metotrexato/análogos & derivados , Metotrexato/metabolismo , Metotrexato/uso terapêutico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Curva ROC , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/genética , Termodinâmica
11.
Sci Rep ; 10(1): 9131, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499574

RESUMO

The mitochondrial calcium uniporter (MCU) plays essential roles in mitochondrial calcium homeostasis and regulates cellular functions, such as energy synthesis, cell growth, and development. Thus, MCU activity is tightly controlled by its regulators as well as post-translational modification, including phosphorylation by protein kinases such as proline-rich tyrosine kinase 2 (Pyk2) and AMP-activated protein kinase (AMPK). In our in vitro kinase assay, the MCU N-terminal domain (NTD) was phosphorylated by protein kinase C isoforms (PKCßII, PKCδ, and PKCε) localized in the mitochondrial matrix. In addition, we found the conserved S92 was phosphorylated by the PKC isoforms. To reveal the structural effect of MCU S92 phosphorylation (S92p), we determined crystal structures of the MCU NTD of S92E and D119A mutants and analysed the molecular dynamics simulation of WT and S92p. We observed conformational changes of the conserved loop2-loop4 (L2-L4 loops) in MCU NTDS92E, NTDD119A, and NTDS92p due to the breakage of the S92-D119 hydrogen bond. The results suggest that the phosphorylation of S92 induces conformational changes as well as enhancements of the negative charges at the L2-L4 loops, which may affect the dimerization of two MCU-EMRE tetramers.


Assuntos
Canais de Cálcio/química , Mitocôndrias/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Cristalografia por Raios X , Dimerização , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Domínios Proteicos , Isoformas de Proteínas/metabolismo , Proteína Quinase C/metabolismo , Estrutura Terciária de Proteína , Eletricidade Estática
12.
ACS Omega ; 5(4): 1773-1781, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32039312

RESUMO

Progeria is a globally noticed rare genetic disorder manifested by premature aging with no effective treatment. Under these circumstances, farnesyltransferase inhibitors (FTIs) are marked as promising drug candidates. Correspondingly, a pharmacophore model was generated exploiting the features of lonafarnib. The selected pharmacophore model was allowed to screen the InterBioScreen natural compound database to retrieve the potential lead candidates. A series of filtering steps were applied to assess the drug-likeness of the compounds. The obtained compounds were advanced to molecular docking employing the CDOCKER module available with Discovery Studio (DS). Subsequently, three compounds (Hits) have displayed a higher dock score and demonstrated key residue interactions with stable molecular dynamics simulation results compared to the reference compound. Taken together, we therefore put forth three identified Hits as FTIs that may further serve as chemical spaces in designing new compounds.

13.
Comput Struct Biotechnol J ; 17: 579-590, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31073393

RESUMO

Deregulation of Cdk5 is a hallmark in neurodegenerative diseases and its complex with p25 forms Cdk5/p25, thereby causes severe neuropathological insults. Cdk5/p25 abnormally phosphorylates tau protein, and induces tau-associated neurofibrillary tangles in neurological disorders. Therefore, the pharmacological inhibition of Cdk5/p25 alleviates tau-associated neurological disorders. Herein, computational simulations probed two candidate inhibitors of Cdk5/p25. Structure-based pharmacophore investigated the essential complementary chemical features of ATP-binding site of Cdk5 in complex with roscovitine. Resultant pharmacophore harbored polar interactions with Cys83 and Asp86 residues and non-polar interactions with Ile10, Phe80, and Lys133 residues of Cdk5. The chemical space of selected pharmacophore was comprised of two hydrogen bond donors, one hydrogen bond acceptor, and three hydrophobic features. Decoy test validation of pharmacophore obtained highest Guner-Henry score (0.88) and enrichment factor score (7.23). The screening of natural product drug-like databases by validated pharmacophore retrieved 1126 compounds as candidate inhibitors of Cdk5/p25. The docking of candidate inhibitors filtered 10 molecules with docking score >80.00 and established polar and non-polar interactions with the ATP-binding site residues of Cdk5/p25. Finally, molecular dynamics simulation and binding free energy analyses identified two candidate inhibitors of Cdk5/p25. During 30 ns simulation, the candidate inhibitors established <3.0 Šroot mean square deviation and stable hydrogen bond interactions with the ATP-binding site residues of Cdk5/p25. The final candidate inhibitors obtained lowest binding free energies of -122.18 kJ/mol and - 117.26 kJ/mol with Cdk5/p25. Overall, we recommend two natural product candidate inhibitors to target the pharmacological inhibition of Cdk5/p25 in tau-associated neurological disorders.

14.
J Clin Med ; 8(2)2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30754680

RESUMO

Dihydrofolate reductase (DHFR) is an essential cellular enzyme and thereby catalyzes thereduction of dihydrofolate to tetrahydrofolate (THF). In cancer medication, inhibition of humanDHFR (hDHFR) remains a promising strategy, as it depletes THF and slows DNA synthesis and cellproliferation. In the current study, ligand-based pharmacophore modeling identified and evaluatedthe critical chemical features of hDHFR inhibitors. A pharmacophore model (Hypo1) was generatedfrom known inhibitors of DHFR with a correlation coefficient (0.94), root mean square (RMS)deviation (0.99), and total cost value (125.28). Hypo1 was comprised of four chemical features,including two hydrogen bond donors (HDB), one hydrogen bond acceptor (HBA), and onehydrophobic (HYP). Hypo1 was validated using Fischer's randomization, test set, and decoy setvalidations, employed as a 3D query in a virtual screening at Maybridge, Chembridge, Asinex,National Cancer Institute (NCI), and Zinc databases. Hypo1-retrieved compounds were filtered byan absorption, distribution, metabolism, excretion, and toxicity (ADMET) assessment test andLipinski's rule of five, where the drug-like hit compounds were identified. The hit compounds weredocked in the active site of hDHFR and compounds with Goldfitness score was greater than 44.67(docking score for the reference compound), clustering analysis, and hydrogen bond interactionswere identified. Furthermore, molecular dynamics (MD) simulation identified three compounds asthe best inhibitors of hDHFR with the lowest root mean square deviation (1.2 Å to 1.8 Å), hydrogenbond interactions with hDHFR, and low binding free energy (-127 kJ/mol to -178 kJ/mol). Finally,the toxicity prediction by computer (TOPKAT) affirmed the safety of the novel inhibitors of hDHFRin human body. Overall, we recommend novel hit compounds of hDHFR for cancer and rheumatoidarthritis chemotherapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...